2,547 research outputs found

    Post density functional theoretical studies of highly polar semiconductive Pb(Ti1x_{1-x}Nix_{x})O3x_{3-x} solid solutions: The effects of cation arrangement on band gap

    Full text link
    We use a combination of conventional density functional theory (DFT) and post-DFT methods, including the local density approximation plus Hubbard UU (LDA+UU), PBE0, and self-consistent GWGW to study the electronic properties of Ni-substituted PbTiO3_{3} (Ni-PTO) solid solutions. We find that LDA calculations yield unreasonable band structures, especially for Ni-PTO solid solutions that contain an uninterrupted NiO2_{2} layer. Accurate treatment of localized states in transition-metal oxides like Ni-PTO requires post-DFT methods. BB-site Ni/Ti cation ordering is also investigated. The BB-site cation arrangement alters the bonding between Ni and O, and therefore strongly affects the band gap (EgE_{\rm g}) of Ni-PTO. We predict that Ni-PTO solid solutions should have a direct band gap in the visible light energy range, with polarization similar to the parent PbTiO3_{3}. This combination of properties make Ni-PTO solid solutions promising candidate materials for solar energy conversion devices.Comment: 19 pages, 6 figure

    Existence of Mild Solutions for Fractional Nonlocal Evolution Equations With Delay in Partially Ordered Banach Spaces

    Get PDF
    This paper deals with the existence of mild solutions for the abstract fractional nonlocal evolution equations with noncompact semigroup in partially ordered Banach spaces. Under some mixed conditions, a group of sufficient conditions for the existence of abstract fractional nonlocal evolution equations are obtained by using a Krasnoselskii type fixed point theorem. The results we obtained are a generalization and continuation of the recent results on this issue. At the end, an example is given to illustrate the applicability of abstract result

    Semi-analytical solution to the second-order wave loads on a vertical cylinder in bi-chromatic bi-directional waves

    Get PDF
    A complete solution is presented for the second-order wave loads experienced by a 15 uniform vertical cylinder in bi-chromatic bi-directional waves. The solution is obtained 16 based on the introduction of an assisting radiation potential without explicitly 17 evaluating the second-order diffraction potential. The semi-analytical formulation for 18 calculating the wave loads is provided and an efficient numerical technique is 19 developed to treat the oscillatory free-surface integral that appears in the force 20 formulation. After validating the present solution by comparing with the predictions 21 based on other methods, numerical studies are conducted for different combinations of 22 incident wave frequencies and wave headings, and the influence of frequencies and 23 headings of dual waves on the second-order wave loads is investigated. In addition, by 24 expressing the second-order wave loads in a power expansion with respect to the wave 25 frequency difference and wave heading difference which are both assumed to be small, 26 approximations on the calculation of wave loads are developed. The accuracy of 27 different approximations is assessed by comparing the approximate results with those 28 based on the complete solution

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Quaternion-valued single-phase model for three-phase power system

    Get PDF
    In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method

    Numerical simulation of stress wave interaction in short-delay blasting with a single free surface

    Get PDF
    It is generally believed that stress wave superposition does occur and plays an important role in cutting blasting with a single free surface, in which explosive columns of several blast holes with short spacing are simultaneously initiated. However, considering the large scatter of pyrotechnic delay detonators that are used in most underground metal mines in China, the existence of stress wave superposition and the influence of this effect on rock fragmentation are questionable. In the present study, the stress wave interaction in short-delay blasting with a single free surface was studied through the use of the LS-DYNA code. Stress waves induced by two blast holes blasting with different delays were compared with the single blast hole case, and the effects of delay time, detonating location and spacing on stress wave superposition were investigated. The numerical results showed that for blast holes with a 1 m spacing, stress wave interaction only occurs when the delay time is 0 ms and does not occur for blasting with delays of more than 1 ms. An increase in the duration of a stress wave via optimizing the detonation location does not improve the stress wave interaction. For a 1 ms delay, stress wave superposition only occurs when the spacing is more than 4 m, which is a rare case in practice. The results indicated that the occurrence of stress wave superposition for blasting with a single free surface is strictly limited to conditions that would be difficult to achieve under the existing delay accuracy of detonators. Therefore, it is unrealistic to improve fragmentation via the stress wave interaction in field blasting. Furthermore, the numerical results of the stress wave interaction also show that there would be a great potential to reduce the hazardous vibrations induced by short-delay blasting by using electronic detonators with better control of delays in an order of several milliseconds

    A method to separate temperature and precipitation signals encoded in tree-ring widths for the western Tien Shan Mountains, northwest China

    Get PDF
    Separating temperature and precipitation signals encoded in tree rings is a complicated issue. Here, we present a separation method by combining two tree-ring width chronologies of Schrenk's spruce (Picea schrenkiana) from the upper and lower timberlines in the western Tien Shan Mountains, northwest China. Correlation analyses show that both chronologies correlate positively with precipitation. However, temperature correlates positively with the chronology from the upper timberline, while negatively with the chronology from the lower timberline. This suggests that the two chronologies contain similar precipitation information but opposite temperature signals. In light of this, we calculated the average and difference of the two chronologies, and found that each of them has a much stronger correlation with precipitation or temperature alone. Finally, we reconstructed local precipitation and temperature variations over the past 201 years by using the average and difference of the two chronologies. The two reconstructions do not have a significant correlation, but they have significant positive and negative relationships on the high- and low-frequency band, respectively.postprin
    corecore